Institut français des sciences et technologies des transports, de l'aménagement et des réseaux

Mise en regard d'un modèle énergétique de véhicule électrique et de mesures embarquées :

impact de la précision de certains paramètres

Marne la Vallée – 17/10/2018 Bruno Jeanneret Laboratoire Transports et Environnement

Mise en regard d'un modèle énergétique de véhicule électrique et de mesures embarquées :

Introduction - Contexte

Le logiciel de VEHLIB

Mesures et modèle Les mesures Le modèle

Analyse
Conducteur dans le trafic
Traitement de la pente
Usage des auxiliaires

Conclusion

Idée à l'origine de ce travail

Introduction - Contexte

- exploiter une base de données existante au laboratoire : mesures sur véhicule électrique (VE)
- · utiliser le logiciel de simulation vehlib pour simuler les parcours
- analyser l'impact de certains paramètres sur la variation de la consommation d'énergie du VE

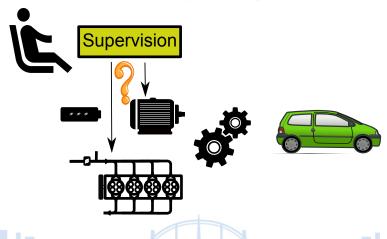
La base de données du projet CEVE

Introduction - Contexte

- un protocole expérimental bien défini
- un parcours de 12 km avec différentes situations de trafic
- 100 participants sélectionnés
- chaque participant a effectué le parcours 2 fois
 - premier parcours (P1): sans indication
 - deuxième parcours (P2) : avec consigne d'éco-conduite
- un fichier journal détaillant le déroulement des expérimentations

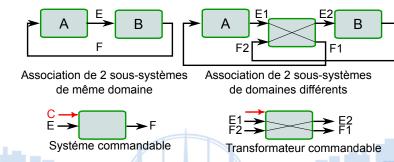
Au total 92 participants présentent des enregistrements valides sur 2 parcours chacun.

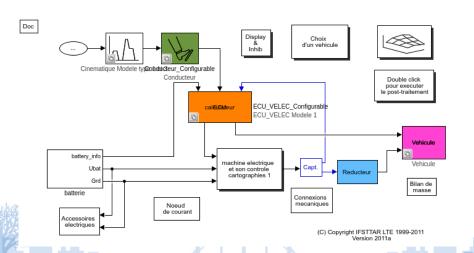
- simulation de tout type de véhicules (VP, PL, TC, ...) et de chaînes de traction (VE, VHs ...) en terme de :
 - consommation d'énergie (carburant, électricité ...)
 - performances dynamiques
 - sollicitation des organes
- permettre plusieurs niveaux de précision pour modéliser un même composant:
 - modèle physique (décrit par les équations mathématique)
 - modèle comportemental (boîte noire, ex. fonction de transfert)
 - modèle intermédiaire
- permettre les extensions vers le temps réel, donc vers le contrôle / commande des systèmes
- optimiser les systèmes et plus particulièrement les lois de gestion de l'énergie des véhicules hybrides
 - modèle direct ou forward
 - modèle inverse ou backward


Les objectifs de VEHLIB

- simulation de tout type de véhicules (VP, PL, TC, ...) et de chaînes de traction (VE, VHs ...) en terme de :
 - consommation d'énergie (carburant, électricité ...)
 - performances dynamiques
 - sollicitation des organes
- permettre plusieurs niveaux de précision pour modéliser un même composant:
 - modèle physique (décrit par les équations mathématique)
 - modèle comportemental (boîte noire, ex. fonction de transfert)
 - modèle intermédiaire
- permettre les extensions vers le temps réel, donc vers le contrôle / commande des systèmes
- optimiser les systèmes et plus particulièrement les lois de gestion de l'énergie des véhicules hybrides
 - modèle direct ou forward
 - modèle inverse ou backward

Les modèles forward dans vehlib

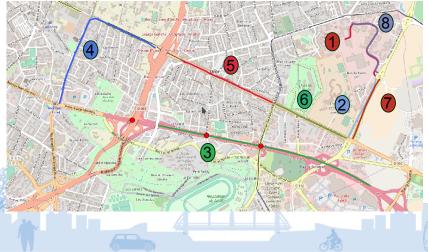

• un sens naturel de résolution des systèmes (respect de la causalité)


Les modèles forward dans vehlib

- un sens naturel de résolution des systèmes (respect de la causalité)
- un formalisme inspiré de la théorie des Bond Graph :
 - les bond graphs sont basés sur le principe de la conservation de la puissance
 - un bond graph est multi-physique Variables d'effort et de flux
 - représentation sous forme de pseudo-bond graph dans vehlib :

Le modèle du véhicule électrique dans vehlib

Les mesures du projet CEVE


enregistreur:

- enregistreur 32 bits
- acquisition à la fréquence de 10 Hz
- réseau CAN du constructeur :
 - fréquence 500 Mb/s
 - 73 paramètres
 - quelques signaux : PDL POS, VEH SPEED, MOTOR SPD, MOTOR TRQ FB, BATT CURRENT, BATT V TOTAL, SOC CONT
 - origine des signaux : calcul ou mesure ? Précision ?
- signal GPS:
 - fréquence 1 Hz
 - quelques signaux : GPS latitude, GPS longitude, GPS altitude, GPS satellites number

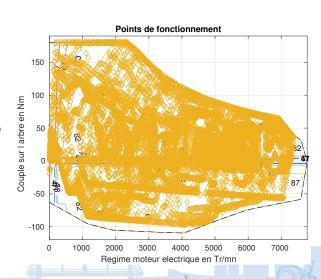
Le trajet

Un trajet de 12 km en zone urbaine

Mesures et modèle

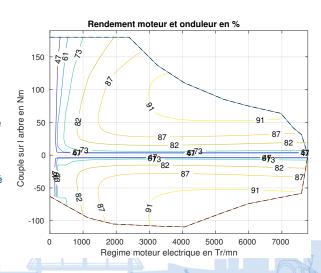
000

masse du véhicule : obtenue par pesée



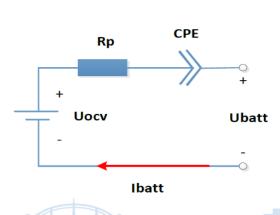
- masse du véhicule : obtenue par pesée
 - paramètres de la loi de route : références bibliographiques

- effort de roulement $F_{roul} = C_{rr} * M_{asse} * G_{pes}$
- effort aérodynamique $F_{aero} = 0.5 * \rho_{air} * S * C_x * v^2$
- effort de pente $F_{pente} = M_{asse} * G_{pes} * sin(\alpha)$

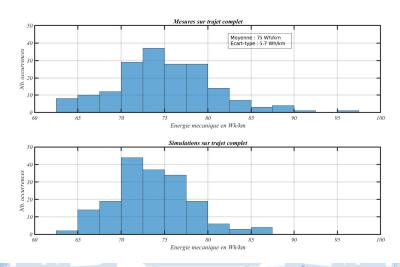

- masse du véhicule : obtenue par pesée
- paramètres de la loi de route : références bibliographiques
- Modèle de la machine électrique
 - Performances: mesures

Mesures et modèle

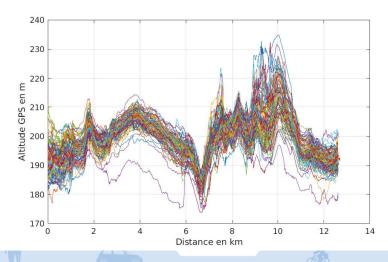
000


- masse du véhicule : obtenue par pesée
- paramètres de la loi de route : références bibliographiques
- Modèle de la machine électrique
 - Performances: mesures
 - Rendement estimé

Mesures et modèle

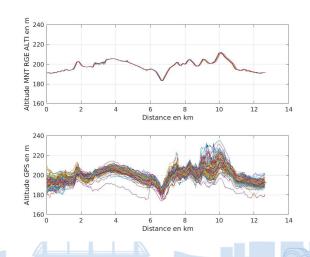

000

- masse du véhicule : obtenue par pesée
- paramètres de la loi de route : références bibliographiques
- Modèle de la machine électrique
 - ✓ Performances : mesures
 - ▶ Rendement estimé
- Modèle de batterie : paramètres estimés


Conducteur dans le trafic - Énergies mécaniques mises en jeu

Calcul de la pente - Imprécisions du GPS

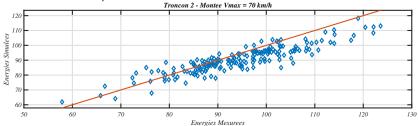
Signal GPS altitude non traité:

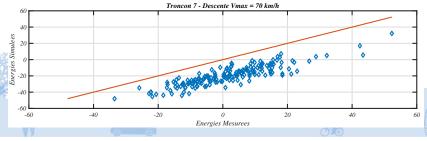

Traitement de la pente longitudinale

Recalcul de l'altitude avec la base RGE ALTI (pas: 5m)

Traitement manuel (passage de pont par ex.)

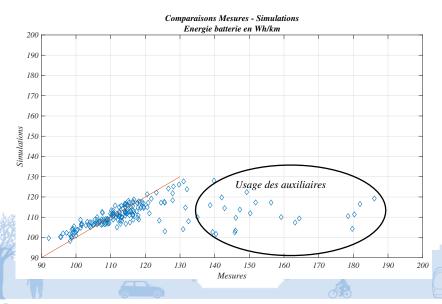
Interpolation à pas constant sur le parcours (pas: 1m)


Calcul de la pente pente =

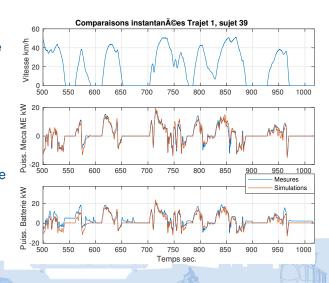


Analyse

Analyse des tronçons 2 et 7

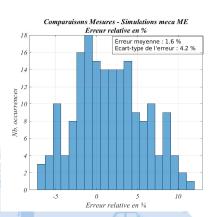

Influence de la pente ... Il reste des choses à faire!

Énergies batterie - Influence des auxiliaires

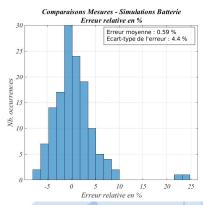

Énergies batterie - Influence des auxiliaires - Illustration sur un parcours avec chauffage

Utilisation du chauffage ou Essuie glace / soufflerie

Jusqu'à 50 % d'augmentation de la consommation batterie


Apparaît souvent dans le fichier journal!

Températures : extérieures < 10 °C ou pluie



Confrontation mesures / modèle

Ensemble des mesures valides pour la partie mécanique

... En excluant les trajets avec utilisation des auxiliaires pour les comparaisons au niveau batterie

e logiciel de VEHLIB Mesures et modèle Analyse Conclusion

Conclusions

VEHLIB

- un logiciel de simulation de la consommation d'énergie des véhicules
- et bien plus ...
- principaux contributeurs : Bruno Jeanneret, Eduardo Redondo, Rochdi Trigui, Emmanuel Vinot

CEVE

- une base de données avec une grande variété de conditions d'usages
- projet CEVE : quelques références ci-après

Validité et incertitudes sur le modèle

- · une caractérisation assez poussée du véhicule
- une précision satisfaisante
- facteurs influençant la consommation d'énergie
 - ▶ dynamique du véhicule <-> comportements de conduite, trafic ...
 - usage des auxiliaires <-> auxiliaires de confort / servitudes du véhicule
 - pente <-> quelle granularité dans le calcul de la pente ?
 - conditions météo : pluie, vent ?
- ✓ les mesures éclairent le modèle mais le modèle peut parfois éclairer les mesures

- R. Trigui, R. Derollepot, P. Kreczanic, L. Poupon, C. Philipps-Bertin: "Use analysis and systemic modeling of a new generation EV for autonomy optimization". EEVC 2014, European Battery, Hybrid and Fuel Cell Electric **Vehicle Congress**
- R. Trigui, B. Jeanneret, E. Vinot, E. Redondo: "Eco-driving rules extraction from a model based optimization for a new generation EV". 2015 IEEE Vehicle Power and Propulsion Conference (VPPC)

Merci pour votre attention

Bruno Jeanneret

